
Counterfactual Online Learning for Open-Loop Monte-Carlo Planning

Thomy Phan1, Shao-Hung Chan1, Sven Koenig2

1University of Southern California
2University of California, Irvine

{thomy.phan,shaohung}@usc.edu, sven.koenig@uci.edu

Abstract

Monte-Carlo Tree Search (MCTS) is a popular approach to
online planning under uncertainty. While MCTS uses sta-
tistical sampling via multi-armed bandits to avoid exhaus-
tive search in complex domains, common closed-loop ap-
proaches typically construct enormous search trees to con-
sider a large number of potential observations and actions.
On the other hand, open-loop approaches offer better mem-
ory efficiency by ignoring observations but are generally not
competitive with closed-loop MCTS in terms of performance
– even with commonly integrated human knowledge. In this
paper, we propose Counterfactual Open-loop Reasoning with
Ad hoc Learning (CORAL) for open-loop MCTS, using a
causal multi-armed bandit approach with unobserved con-
founders (MABUC). CORAL consists of two online learning
phases that are conducted during the open-loop search. In the
first phase, observational values are learned based on pre-
ferred actions. In the second phase, counterfactual values are
learned with MABUCs to make a decision via an intent policy
obtained from the observational values. We evaluate CORAL
in four POMDP benchmark scenarios and compare it with
closed-loop and open-loop alternatives. In contrast to stan-
dard open-loop MCTS, CORAL achieves competitive per-
formance compared with closed-loop algorithms while con-
structing significantly smaller search trees.

1 Introduction
Many real-world problems can be modeled as Partially Ob-
servable Markov Decision Process (POMDP), where the
true state is unknown to the agent due to limited and noisy
sensors, to model planning and reinforcement learning prob-
lems (Ross et al. 2008). However, solving POMDPs exactly
is intractable for domains with enormous state spaces and
long planning horizons due to the curse of dimensionality
(Kaelbling, Littman, and Cassandra 1998) and the curse of
history, respectively (Pineau, Gordon, and Thrun 2006).

Monte-Carlo Tree Search (MCTS) is a popular approach
to online planning in POMDPs (Świechowski et al. 2023).
MCTS breaks both curses with statistical sampling via
multi-armed bandits and simulation. Closed-loop MCTS
constructs sparse trees over actions and observations and
represents the state-of-the-art for efficient planning in large
POMDPs (Silver and Veness 2010; Somani et al. 2013; Bai
et al. 2014). However, the constructed closed-loop trees can
still become arbitrarily large for highly complex domains,

(a) observational (b) interventional (c) counterfactual

Figure 1: Different decision-making models and expected
returns with unobserved confounder U , decision A (i.e., an
action), and payoff G (i.e., the return) based on [Pearl 2010].
In each model, blue nodes denote observable variables.
Dashed lines illustrate the influence of unobserved variables,
and solid lines the influence of the agent. (a) Natural or ob-
servational decision-making through an intent a, solely in-
fluenced by U . (b) Classic or interventional decision-making
via policy π that ignores the existence of U . (c) Counterfac-
tual decision-making that conditions on the intent of (a).

therefore requiring considerable memory resources (Phan
et al. 2019a; Powley, Cowling, and Whitehouse 2017).

Open-loop MCTS offers better memory efficiency by ig-
noring observations, resulting in significantly smaller search
trees (Lecarpentier et al. 2018; Perez Liebana et al. 2015;
Phan et al. 2019a). However, open-loop MCTS is typically
not competitive with closed-loop MCTS in terms of perfor-
mance – even with commonly integrated human knowledge
(Silver and Veness 2010). Due to the lack of context infor-
mation, open-loop MCTS only converges to decisions that
are suitable “on average” for unobserved situations (Wein-
stein and Littman 2012). Considering the existence of un-
known structural properties of the underlying problem, i.e.,
unobserved confounders, may be helpful to improve the per-
formance of memory-efficient open-loop planning, though
(Bareinboim, Forney, and Pearl 2015).

In this paper, we propose Counterfactual Open-loop
Reasoning with Ad hoc Learning (CORAL) for open-loop
MCTS, using a causal multi-armed bandit approach with un-
observed confounders (MABUC) (Bareinboim, Forney, and
Pearl 2015). Unlike standard multi-armed bandits, as illus-
trated in Fig. 1b, MABUCs select actions based on some

“natural” intent, i.e., an intuitive action, depending on struc-
tural (but unknown) properties of the underlying problem, as
illustrated in Fig. 1c. CORAL consists of two online learn-
ing phases that are conducted during the open-loop search.
In the first phase, observational values are learned based on
preferred actions (Silver and Veness 2010). In the second
phase, counterfactual values are learned with MABUCs to
make a decision via an intent policy obtained from the ob-
servational values. Our contributions are as follows:
• We adjust MABUCs for the heuristic search setting,

where an intent policy needs to be obtained from prior
human knowledge to conduct counterfactual learning.

• We use the modified MABUCs to formulate CORAL, an
open-loop MCTS algorithm that learns observational and
counterfactual values on the fly during the search.

• We evaluate CORAL in four POMDP benchmark scenar-
ios and compare it with MCTS alternatives. In contrast
to standard open-loop MCTS, CORAL achieves compet-
itive performance compared with closed-loop algorithms
while constructing significantly smaller search trees.

2 Background
2.1 Problem Setting
A POMDP is defined by M = ⟨S,A,P,R,O,Ω, b0⟩,
where S is a (finite) set of states, A is the (finite)
set of actions, P(st+1|st, at) is the transition probability,
R(st, at) = rt ∈ R is the reward, O is a (finite) set of
observations, Ω(ot+1|st+1, at) is the observation probabil-
ity, and b0 is a probability distribution over initial states
s0 ∈ S (Kaelbling, Littman, and Cassandra 1998). We de-
fine Alegal(st) ⊆ A as the set of executable actions at st.

The agent maintains a history ht = ⟨a0, o1, ..., at−1, ot⟩
of past actions and observations. A belief state b(st|ht)
is a sufficient statistic for history ht and defines a distri-
bution over states st. b(st|ht) can be updated by Bayes
rule with b0 representing the prior distribution (Kaelbling,
Littman, and Cassandra 1998). The goal is to find a pol-
icy π(ht) ∈ A, which maximizes the expectation of return
Gt =

∑T−1
k=0 γkrt+k for each state st ∈ S for a horizon or

search depth T , where γ ∈ [0, 1] is the discount factor.
The value function V π(ht) = Eπ[Gt|ht

]
is the expected

return conditioned on history ht given a policy π. An op-
timal policy π∗ has a value function V π∗

= V ∗ with
V ∗(ht) ≥ V π′

(ht) for all ht ∈ (A×O)T and π′ ̸= π∗.

2.2 Monte-Carlo Planning in POMDPs
We focus on Monte-Carlo planning, where M̂ ≈ M is
a generative model that can be used as a black box sim-
ulator (Silver and Veness 2010; Weinstein and Littman
2013). Given st and at, the simulator M̂ provides a sam-
ple ⟨st+1, ot+1, rt⟩ ∼ M̂(st, at). Monte-Carlo planning ap-
proximates π∗ and V ∗ by iteratively simulating and evalu-
ating action sequences without requiring explicit probability
distributions of the POMDP M . We focus on online plan-
ning where search and execution are interleaved, using a
fixed simulation budget nb, i.e., number of iterations, per
time step t (Weinstein and Littman 2013).

(a) Closed-loop tree (b) Open-loop tree

Figure 2: Closed- and open-loop planning schemes. (a)
Closed-loop tree with observations (circlular nodes) and ac-
tions (rectangular nodes). Red links indicate stochastic ob-
servations. (b) Open-loop tree with links as actions and sum-
marized histories, according to the blue dotted ellipses in (a).

Planning can be closed- or open-loop. Closed-loop plan-
ning conditions the action selection on histories ht of ac-
tions and observations. Open-loop planning only condi-
tions the action selection on previous sequences of ac-
tions ⟨a0, ..., aT−1⟩ and summarized statistics about his-
tories (Bubeck and Munos 2010; Weinstein and Littman
2013). An example is shown in Fig. 2. A closed-loop tree
for a stochastic domain is shown in Fig. 2a, while Fig. 2b
shows the corresponding open-loop tree, which summarizes
the histories of Fig. 2a within the blue dotted ellipses.

Closed-Loop Monte-Carlo Planning Partially Observ-
able Monte-Carlo Planning (POMCP) is a closed-loop ap-
proach based on Monte-Carlo Tree Search (MCTS) and the
state-of-the-art for online planning in large POMDPs (Silver
and Veness 2010). POMCP uses a search tree of histories
with o-nodes representing observations and a-nodes repre-
senting actions of a history (Fig. 2a). Each o-node maintains
a multi-armed bandit representing the tree policy πtree, and
each a-node represents an arm with a selection count na, a
value estimate Ga ≈ V (ht), and a value variance estimate
(σa)2 for history ht. A simulation starts at the root o-node,
also representing the current belief state b(st|ht), by initially
sampling a state st ∼ b(·|ht). For tree traversal, the policy
πtree selects a-nodes, whose represented actions are simu-
lated with the generative model M̂ to determine the next
o-node to visit. After reaching a leaf o-node, the node is ex-
panded, and a rollout policy πrollout is used to simulate sam-
pled actions until a terminal state is reached or a maximum
search depth T is exceeded. The observed rewards rt+k are
accumulated to returns Gt+k and propagated back to update
all o- and a-nodes at each tree level k in the search path.

Open-Loop Monte-Carlo Planning (Lecarpentier et al.
2018; Phan et al. 2019a) formulate open-loop MCTS vari-
ants, which can be applied to POMDPs by constructing
search trees that summarize all o-nodes to history distribu-
tion nodes, as illustrated in Fig. 2b.

Open-loop planning generally converges to sub-optimal
solutions in stochastic domains due to ignoring past
observations to optimize the node values V̂ (Nt) ≈∑

st∈S b(st|ht)V (ht) as weighted averages over all history

values V (ht) (Fig. 2b) (Lecarpentier et al. 2018). However,
if the problem is too large to provide a sufficient simulation
budget nb or memory, then open-loop planning can be useful
due to exploring a much smaller search space for reasonable
decision-making (Weinstein and Littman 2013).

2.3 Bandits with Unobserved Confounders
Multi-armed Bandits (MAB) MABs or bandits are fun-
damental decision-making problems with a single state s,
a set of actions a ∈ A, and a stochastic payoff function
X (s, a) := Ga, where Ga is a random variable with an un-
known distribution. The goal is to determine an action a′,
which maximizes the expected payoff E

[
Ga′]

, as illustrated
in Fig. 1b. The agent has to balance between sufficiently try-
ing out actions to estimate their expected payoff accurately
and exploiting its current knowledge by greedily selecting
the action with the currently highest estimated payoff. This
is known as the exploration-exploitation dilemma, where ex-
ploration can find actions with better payoffs but requires
time for trying them out, while exploitation can lead to fast
convergence but possibly gets stuck in a local optimum. Our
paper focuses on Thompson Sampling (Thompson 1933).

MABs with Unobserved Confounders (MABUC) We
assume a Structural Causal Model (SCM), as illustrated in
Fig. 1 (Pearl 2010). Each SCM is associated with a directed
acyclic graph G, a set of endogenous (observed) variables
W , and a set of exogenous (unobserved) variables U . Edges
in G correspond to functional relationships between endoge-
nous variables wi ∈W , i.e., wi ← fi(W \ {wi}, ui), where
ui ⊆ U with probability P (ui). Given two endogenous
variables A and G, we define the counterfactual expression
g = Ga meaning “G would be g, if A had been a” (Forney,
Pearl, and Bareinboim 2017).

A MABUC is a bandit model, where for each trial, some
unobserved variable or confounder u ⊆ U is emitted that
triggers an intent a ∈ A via a = f(u), as shown in Fig. 1a.
A counterfactual policy π determines the agent’s decision
via a′ = π(a) = π(f(u)), as illustrated in Fig. 1c.

The goal is to determine an action a′, which maximizes
the regret decision criterion (RDC) or the expected counter-
factual value E

[
Ga′ |a

]
given an intent a that was caused by

a variable u ∈ U (Bareinboim, Forney, and Pearl 2015).
MABUC is a generalization of the standard MAB, which

would completely ignore the existence of any unobserved
variable u and therefore optimize the weighted average of
RDCs E

[
Ga′

] =
∑

a∈A P (a)E
[
Ga′ |a

]
instead (Fig. 1b).

MABUCs are intriguing for open-loop planning in
POMDPs to make memory-efficient decisions under the un-
certainty of states st and observations ot.

3 Related Work
Open-loop planning, as shown in Fig. 2b, is an efficient
approach to online planning in complex domains with re-
stricted resources (Bubeck and Munos 2010; Perez Liebana
et al. 2015; Lecarpentier et al. 2018). However, open-loop
planning is generally inferior to closed-loop planning in
terms of performance due to the lack of context information

(Barenboim and Indelman 2023; Wu et al. 2021). While hu-
man knowledge, e.g., heuristic functions or preferred action
sets, is commonly used for enhancement, open-loop plan-
ning is generally not competitive in terms of performance
(Perez Liebana et al. 2015; Silver and Veness 2010). We
propose counterfactual online learning to effectively lever-
age human knowledge in open-loop MCTS to overcome the
original performance limitation and compete with closed-
loop MCTS in a more memory-efficient way.

Stack-based planning is a memory-bounded approach to
open-loop planning. A sequence or stack of T MABs is
maintained to sample open-loop plans with high expected
return (Weinstein and Littman 2013; Belzner and Gabor
2017; Phan et al. 2019a,b). Despite the fixed memory usage
of at most T MABs, the performance of stack-based plan-
ning is not competitive with tree search algorithms.

There are closed-loop approaches to regularizing the tree
size of classic MCTS or POMCP in complex domains. AR-
DESPOT is an anytime algorithm that constructs and opti-
mizes sparse search trees from a fixed set of scenarios (So-
mani et al. 2013). POMCPOW uses progressive widening
to cope with large or continuous state, action, and obser-
vation spaces (Sunberg and Kochenderfer 2018). Despite
the progress of regularizing closed-loop MCTS for smaller
trees, we demonstrate that our open-loop approach con-
structs significantly smaller trees while achieving compet-
itive performance in a variety of benchmark scenarios.

Causal models have been used to provide more accurate
dynamics models M̂ for planning and reinforcement learn-
ing (Wang et al. 2022; Cannizzaro and Kunze 2023). Our
work focuses on MABUCs to directly enhance the decision-
making algorithm, i.e., open-loop MCTS, instead of the dy-
namics model M̂ , therefore being orthogonal to these works.

4 Counterfactual Online Learning for MCTS
4.1 Thompson Sampling
Thompson Sampling is a Bayesian MAB approach (Thomp-
son 1933). We assume that Ga follows a Normal distribu-
tion N (µ, 1

τ) with unknown mean µ and precision τ = 1
σ2 ,

where σ2 is the variance (Bai, Wu, and Chen 2013; Bai
et al. 2014). ⟨µ, τ⟩ follows a Normal Gamma distribution
NG(µ0, λ, α, β) with λ > 0, α ≥ 1, and β ≥ 0. The dis-
tribution over τ is a Gamma distribution τ ∼ Gamma(α, β)
and the conditional distribution over µ given τ is a Normal
distribution µ ∼ N (µ0,

1
λτ).

Given a prior distribution P (θa) = NG(µ0, λ0, α0, β0)
and n observations Da = {Ga

1 , ..., G
a
n}, the posterior dis-

tribution is defined by P (θa|Da) = NG(µ1, λ1, α1, β1),
where µ1 = λ0µ0+nGa

λ0+n , λ1 = λ0 + n, α1 = α0 + n
2 , and

β1 = β0 + 1
2 (nσ

2 + λ0n(Ga−µ0)
2

λ0+n). Ga is the mean of all
values in Da and σ2 = 1

n

∑n
i=1(G

a
i −Ga)2 is the variance.

The posterior P (θa|Da) is inferred for each action a ∈ A
to sample an estimate µa for the expected return. The action
with the highest estimate is selected. The complete formula-
tion is given in Algorithm 1, whereA is the set of executable
actions, Nt = ⟨Ga, (σa)2, na⟩ are the MAB statistics, and
greedy indicates, if the MAB shall select greedily w.r.t. Ga.

Algorithm 1: Thompson Sampling

1: procedure ThompsonSampling(A, Nt, greedy)
2: if greedy then
3: return argmaxa∈AG

a

4: end if
5: for a ∈ A do
6: Infer posterior parameters ⟨µ1, λ1, α1, β1⟩ from

Ga, (σa)2, na, P (θa)
7: µa, τa ∼ NG(µ1, λ1, α1, β1)
8: end for
9: return argmaxa∈Aµ

a

10: end procedure

11: procedure UpdateBandit(Nt, G
′)

12: na ← na + 1
13: ⟨Ga

old, G
a⟩ ← ⟨Ga, (naGa

old +G′)/(na + 1)⟩
14: (σa)2 ← [(na−1)(σa)2+(G′−Ga

old)(G
′−Ga)]/na

15: end procedure

The prior should ideally reflect knowledge about the un-
derlying model, especially for initial turns, where only a
small amount of data has been observed (Honda and Take-
mura 2014). If there is no knowledge, then uninformative
priors should be used to sample all possibilities (almost) uni-
formly. This can be achieved by setting the priors such that
the variance of the resulting Normal distributionN (µ0,

1
λ0τ

)

becomes infinite (1
λ0τ0

→ ∞ and λ0τ → 0). Since τ fol-
lows a Gamma distribution Gamma(α0, β0) with expecta-
tion E(τ) = α0

β0
, α0 and β0 should be chosen such that

α0

β0
→ 0. Given the hyperparameter space λ0 > 0, α0 ≥ 1,

and β0 ≥ 0, it is recommended to set α0 = 1 and µ0 = 0
to center the Normal distribution. λ0 should be chosen small
enough and β0 should be sufficiently large (Bai et al. 2014).

4.2 MABUC with Human Knowledge
As explained in Section 2.3 and sketched in Fig. 1c,
MABUCs require some “natural” intent a that depends on
structural (but generally unknown) properties of the under-
lying problem (Bareinboim, Forney, and Pearl 2015).

In the context of search algorithms, a “natural” intent can
be represented by heuristics, which encode human knowl-
edge about some structural properties of the underlying
problem (Perez Liebana et al. 2015). Many MCTS ap-
proaches use human knowledge in the form of preferred ac-
tions Apref(st) ⊆ Alegal(st) (Silver and Veness 2010).

Therefore, we propose two online learning phases: first,
to obtain an intent policy πintent based on Apref(st) and then
find a counterfactual policy πcounterfactual based onAlegal(st).

Given a simulation budget nb and a training ratio η ∈
[0, 1], we train a Thompson Sampling bandit N to select ac-
tions a ∈ Apref(st) for the first ⌊nbη⌋ trials to learn obser-
vational values E

[
Ga|a

]
according to Fig. 1a. After ⌊nbη⌋

trials, we select intent actions a via bandit N by maximiz-
ing E

[
Ga|a

]
. The intent actions a are then used to query

another Thompson Sampling bandit Na per intent a to sam-
ple interventional actions a′ ∈ Alegal(st) in order to learn

counterfactual values E
[
Ga′ |a

]
, according to Fig. 1c.

Fig. 3 illustrates the counterfactual value table used for
online learning. In the first phase, our MABUC learns the
observational values E

[
Ga|a

]
on the diagonal for πintent. In

the second phase, a row is queried via πintent(Apref(s)) =
argmaxa∈Apref(s)

E
[
Ga|a

]
. The selected row is used to learn

the counterfactual values E
[
Ga′ |a

]
for πcounterfactual.

Algorithm 2: CORAL Planning

1: procedure CORAL(ht, T, η)
2: Create Nt for ht

3: τ ← ⌈nbη⌉
4: while nb > 0 do
5: st ∼ b̂(·|ht) ▷ Sample st for simulation (Fig. 4)
6: CounterfactualSearch(Nt, st, T, 0, nb < τ)
7: nb ← nb − 1
8: end while
9: return argmaxat∈A(G

at
t)

10: end procedure

11: procedure CounterfactualSearch(Nt, st, T, d, cf)
12: if d ≥ T or st is a terminal state then
13: return 0
14: end if
15: if Nt is a leaf node then
16: Expand Nt

17: Perform rollout with πrollout to sample Gt

18: return Gt

19: end if
20: a← ThompsonSampling(Apref(st), Nt, cf)
21: if cf ∧ Alegal(st) ̸= Apref(st) then
22: a′ ← ThompsonSampling(Alegal(st), N

a
t ,¬cf)

23: else
24: a′ ← a
25: end if
26: ⟨st+1, rt, ot+1⟩ ∼ M̂(st, a

′) ▷ Simulate action a′

27: Gt+1 ← CounterfactualSearch(Nt+1, st+1, T, d +
1, cf)

28: Gt ← rt + γGt+1

29: if a = a′ then
30: UpdateBandit(Nt, Gt) ▷ Update πintent
31: end if
32: if cf ∧ Alegal(st) ̸= Apref(st) then
33: UpdateBandit(Na

t , Gt) ▷ Update πcounterfactual
34: end if
35: return Gt

36: end procedure

4.3 Open-Loop MCTS with MABUCs
We now define Counterfactual Open-loop Reasoning with
Ad hoc Learning (CORAL) for open-loop MCTS, using
MABUCs from Section 4.2. Each CORAL node represents
a MABUC with one Thompson Sampling bandit Nt to ob-
tain the intent policy πintent and at least another bandit Na

t
for the counterfactual policy πcounterfactual for each intent ac-
tion a ← πintent(Apref(st)). We propose a lazy initialization

Interventional Actions

Intents

1

2

Figure 3: Counterfactual value table as a cross of intent
and interventional actions a and a′, respectively. Each cell
stores an estimate of the counterfactual value E

[
Ga′ |a

]
. The

MABUC (1) queries the intent a by maximizing the obser-
vational values on the diagonal (cyan) before (2) making a
counterfactual decision a′ based on the selected row (red).

Simulated
States

...
...

Open-Loop
Nodes

...
...

(a) Standard open-loop

Simulated
States

...
...

Open-Loop
Nodes

...
...

(b) Counterfactual open-loop

Figure 4: Open-loop variants based on interventional and
counterfactual decision-making (Fig. 1). States are simu-
lated but not stored explicitly, according to Fig. 2 and Al-
gorithm 2, Line 26. (a) Standard open-loop completely ig-
nores states for tree traversal. (b) Counterfactual open-loop
considers states indirectly through the intent policy πintent.

scheme, where a counterfactual bandit Na
t is only allocated

when intent a is actually selected by πintent in the counterfac-
tual phase. Therefore, we can save some row allocations.

A simulation starts at a state st, sampled from the current
belief state b̂(st|ht) ≈ b(st|ht), which is approximated by
a particle filter, as described in (Silver and Veness 2010).
An open-loop tree (Fig. 2b) is iteratively constructed using
Thompson Sampling for tree traversal. In the first ⌊nbη⌋ it-
erations, πintent is obtained via Thompson Sampling. After-
ward, πcounterfactual is obtained via Thompson Sampling and
πintent (Table 1). When a leaf node is reached, it is expanded
by a child node, and a rollout is performed with a policy
πrollout until a terminal state is reached or a maximum search
depth T is exceeded. The observed rewards are accumulated
to returns Gt and propagated back to update the correspond-
ing MABUC of every node in the simulated path. When
the simulation budget nb has run out, the action at with the
highest average counterfactual return Gat is selected for ex-
ecution. The complete formulation is given in Algorithm 2,
where ht is the current history, T is the maximum search
depth, and η is the training ratio.

4.4 Conceptual Discussion
CORAL represents a strict generalization of the standard
open-loop MCTS: If η = 0, then CORAL reduces to open-

Table 1: Tree traversal policies according to Fig. 1.

Policy Definition
πintent argmaxa∈Apref(s)

E
[
Ga|a

]
πtree argmaxa′∈Alegal(s)

∑
a P (a)E

[
Ga′ |a

]
πcounterfactual argmaxa′∈Alegal(s)

E
[
Ga′ |πintent(Apref(s))

]
loop MCTS without any human knowledge, that only selects
actions from Alegal(st). If η = 1, then CORAL completely
depends on human knowledge, thus only selecting actions
from Apref(st), effectively representing human intuition.

The MABUCs can converge to optimal actions a′ if
Apref(st) sufficiently captures the structural properties of the
POMDPs that would be ignored by the open-loop search
otherwise, as shown in Fig. 4a (Bareinboim, Forney, and
Pearl 2015). According to (Forney, Pearl, and Bareinboim
2017), the preferred actions do not need to be optimal,
though. Therefore, if 0 < η < 1, then CORAL can converge
to an optimal counterfactual policy π∗ given a sufficient sim-
ulation budget nb. This is because all value estimates even-
tually converge to stationary values given a stationary rollout
policy πrollout, thus enabling convergence of all MABUCs in
the tree (Kocsis and Szepesvári 2006; Bai et al. 2014).

Table 1 lists all tree traversal policies for open-loop
MCTS that are considered in this paper: The intent policy
πintent optimizes the observational value (Fig. 1a) by select-
ing actions from Apref(s). The standard traversal policy πtree
optimizes the interventional value (Fig. 1b) as a weighted
average value over all possible intents, without explicit con-
sideration of πintent. The counterfactual policy πcounterfactual
optimizes the counterfactual value (Fig. 1c) by explicitly
querying πintent, as sketched in Fig. 3.

Unlike standard open-loop MCTS, CORAL considers
states indirectly through πintent for tree traversal (without
storing them), as shown in Fig. 4b, enabling a better in-
formed search. Thus, CORAL can potentially compete with
closed-loop planning in a more memory-efficient way.

If a standard open-loop MCTS allocates X nodes, then
CORAL produces at least 2X nodes due to maintaining one
MAB for πintent and another one for πcounterfactual per node.
In the worst case, CORAL produces X2 nodes, where |A|
counterfactual MABs are allocated per node. The worst case
only occurs whenApref = Alegal for all states st ∈ S and the
observational values on the diagonal in Fig. 3 are same. In
our experiments, reported in Section 5.3, CORAL produces
far less than X2 nodes when preferred actions are available.

5 Experiments1

5.1 Evaluation Environments
For each environment, we use the discount factor γ = 0.95
and respective preferred action sets Apref, as suggested in
(Silver and Veness 2010).

Tag is a gridworld challenge where the agent has to find
and tag a target that intentionally moves away. The agent
knows its own position and can only observe the target when

1https://github.com/thomyphan/counterfactual-planning.

sharing the same position. The agent can either wait or move
to the four adjacent positions with a reward of −1. In addi-
tion, the agent can perform a tag action and is rewarded with
+10 if the target is successfully tagged and −10 otherwise.
Apref avoids moving into walls and only prefers tagging

when the target was observed in a corner.
RockSample[K,L] consists of a K ×K grid with L rocks

(Smith and Simmons 2004). Each rock can be good or bad,
which is unknown to the agent. The agent has to sample
good rocks and avoid bad rocks. It has a noisy sensor, which
produces an observation ot ∈ {good, bad} for a particular
rock. The probability of sensing the correct rock state de-
creases exponentially with the agent’s distance to it. Sam-
pling gives a reward of +10 if the rock is good and−10 oth-
erwise. If a good rock is sampled, it becomes bad. Moving
and sensing are not rewarded. Moving past the east edge of
the grid gives a reward of +10, and the episode terminates.
Apref prefers sampling rocks that emitted more good than

bad observations. If all rocks emit more bad than good ob-
servations, then Apref prefers moving east to the goal area.

PocMan is a partially observable version of PacMan (Sil-
ver and Veness 2010). The agent navigates in a 17×19 maze
and has to eat randomly distributed food pellets and power
pills. There are four ghosts moving randomly in the maze. If
the agent is within the visible range of a ghost, it is getting
chased by the ghost and dies if it touches the ghost, termi-
nating the episode with a reward of −100. Eating a power
pill enables the agent to eat ghosts for 15 time steps. In that
case, the ghosts will run away if the agent is under the effect
of a power pill. At each time step, a reward of −1 is given.
Eating food pellets gives a reward of +10, and eating a ghost
gives +25. The agent can only perceive ghosts if they are in
its direct line of sight in each cardinal direction or within a
hearing range. Also, the agent can only sense walls and food
pellets that are adjacent to it.
Apref prefers moves that avoid any ghost without the effect

of a power pill and moves toward observed ghosts otherwise.

5.2 Methods
Closed-Loop Algorithms We use POMCP, POMCPOW,
and AR-DESPOT as state-of-the-art baselines (Sunberg and
Kochenderfer 2018; Somani et al. 2013). Our POMCP and
POMCPOW implementations are based on the code from
(Silver and Veness 2010), using Thompson Sampling for
πtree, as specified in Algorithm 1 (Bai et al. 2014). For AR-
DESPOT, we run the code from (Somani et al. 2013). For all
approaches, πrollout randomly selects actions fromAlegal(s

′),
depending on the simulated state s′ ∈ S. In all cases, each
simulation step has at most one expansion step, where new
nodes are added to the search tree. Thus, the tree size should
increase linearly w.r.t. nb.

Open-Loop MCTS We use the open-loop MCTS imple-
mentation from (Phan et al. 2019a), where actions are se-
lected with Thompson Sampling, using Algorithm 1. πrollout
randomly selects actions from Alegal(s

′), depending on the
currently simulated state s′ ∈ S. Like closed-loop MCTS,
the search tree size increases linearly w.r.t. nb, but with
fewer nodes, since open-loop trees ignore observations.

pref.
legal

Figure 5: Performance of CORAL, open-loop MCTS vari-
ants, and closed-loop search over 100 runs for different nb.
Shaded areas show the 95% confidence interval.

Stack-Based Planning We use the stack-based planning
implementation from (Phan et al. 2019a) based on a se-
quence of bandits Nt with 0 ≤ t ≤ T − 1. Starting at st, all
bandits Nt use Thompson Sampling to select actions. Given
a horizon of T , stack-based planning always maintains T
Thompson Sampling bandits, regardless of the budget nb.

CORAL Our CORAL implementation is based on the
open-loop MCTS implementation from (Phan et al. 2019a),
where we modify the bandit routines, namely the action se-
lection and the update (Lines 20-25 and 29-34 in Algorithm
2) to implement MABUCs. The search tree size increases
linearly w.r.t. nb with fewer nodes than closed-loop MCTS
but expectedly more nodes than standard open-loop MCTS.

5.3 Results
We ran experiments for different simulation budgets nb. For
each budget nb, we tested 100 random instances to report the
average performance and the 95% confidence interval. Un-
less stated otherwise, we always set η = 50% for CORAL.

Performance Evaluation We first compare CORAL
against standard open-loop MCTS with preferred (η = 1)
or legal actions (η = 0), regarding different simulation bud-
gets nb. The results are shown in Fig. 5. We also provide
the average performance of all closed-loop algorithms using
the maximum simulation budget of nb = 216. CORAL out-
performs all open-loop variants when nb > 1000 and even-
tually achieves a similar performance level as closed-loop
planning. Standard open-loop MCTS performs better when
using preferred actions as integrated human knowledge, but
it can only keep up with CORAL in Rocksample[11,11].
Stack-based planning performs worst in all scenarios.

Parameter Evaluation Next, we evaluate the influence of
different training ratios η ∈ {25%, 50%, 75%} as well as the
absence of preferred actions based on human knowledge by
setting Apref = Alegal. The results are shown in Fig. 6. All

Figure 6: Performance of CORAL over 100 runs for differ-
ent simulation budgets nb, training ratios η, and absence of
human knowledge such that Apref = Alegal. Shaded areas
show the 95% confidence interval.

CORAL variants with 0 < η < 1 achieve roughly similar
performance. The absence of human knowledge generally
leads to inferior performance, indicating that Apref needs to
capture the structure of the underlying problem sufficiently
well to make effective counterfactual decisions.

Performance-Memory Tradeoff Finally, we evaluate the
performance relative to the inverse number of nodes, i.e., one
divided by the number of nodes created during the search.
We use lazy node initialization for all closed-loop algorithms
and CORAL, where bandit nodes are only counted when
explicitly visited or invoked during the search. The results
are shown in Fig. 7. All closed-loop algorithms are mainly
aligned to the left because they construct significantly larger
trees than the open-loop algorithms. AR-DESPOT con-
structs the smallest closed-loop trees while having notably
high variance in performance. The CORAL clusters are al-
ways centered around the same height as the closed-loop
clusters, indicating that CORAL achieves competitive per-
formance despite constructing significantly smaller trees.
Due to the lazy node initialization, CORAL only constructs
slightly larger trees than the standard open-loop variants.

6 Discussion
In this paper, we presented CORAL, an open-loop MCTS
variant using a causal bandit approach with unobserved con-
founders. CORAL first learns observational values using
commonly integrated human knowledge to obtain a coun-
terfactual policy via MABUCs to make a final decision.

Our results demonstrate that CORAL meaningfully com-
bines human knowledge and bandit-based learning for open-
loop MCTS. CORAL can outperform both open-loop ex-
tremes, namely the variant exclusively based on human
knowledge (η = 1) as well as the variant without any human
knowledge (η = 0). The performance gap between CORAL
and the former open-loop extreme confirms that the provided

Closed-Loop Search Open-Loop Search

pref.
legal

Figure 7: Performance of CORAL, closed-loop search, and
open-loop MCTS variants relative to the inverse number of
nodes created during the search. Each point represents a
random domain instance with a simulation budget of nb ∈
{215, 216}. The closer the points are to the star in the top-
right corner, the better the performance-memory tradeoff.

human knowledge does not have to represent an (near-) op-
timal policy but merely needs to capture the structural prop-
erties of the problem sufficiently well (Forney, Pearl, and
Bareinboim 2017). CORAL effectively overcomes the lim-
itation of classic open-loop planning and achieves competi-
tive performance to closed-loop alternatives.

CORAL offers a better performance-memory tradeoff
than closed-loop planning and is generally robust w.r.t. the
choice of the training ratio as long as 0 < η < 1.

While CORAL requires human knowledge in the form of
preferred actions or some pre-computed intent policy, we
can simply rely on common heuristics, as used in practice
(Perez Liebana et al. 2015). Since these heuristics exploit
structural properties explicitly, we can use them in CORAL
without directly reasoning about these properties ourselves
(Fig. 4b). Thus, we can effectively reuse and improve prior
human knowledge for memory-efficient planning.

CORAL requires a sufficient simulation budget, i.e., nb >
1000, to learn a meaningful intent policy because the coun-
terfactual learning phase depends on its quality.

For future work, we want to test the idea of CORAL with
other heuristic search algorithms to better leverage human
knowledge for different problem classes.

Acknowledgements
The research at the University of Southern California was
supported by the National Science Foundation (NSF) un-
der grant numbers 1817189, 1837779, 1935712, 2121028,
2112533, and 2321786 as well as a gift from Amazon

Robotics. The views and conclusions contained in this doc-
ument are those of the authors and should not be interpreted
as representing the official policies, either expressed or im-
plied, of the sponsoring organizations, agencies, or the U.S.
government.

References
Bai, A.; Wu, F.; and Chen, X. 2013. Bayesian Mixture Mod-
elling and Inference based Thompson Sampling in Monte-
Carlo Tree Search. In Advances in Neural Information Pro-
cessing Systems, 1646–1654.
Bai, A.; Wu, F.; Zhang, Z.; and Chen, X. 2014. Thomp-
son Sampling based Monte-Carlo Planning in POMDPs. In
Proceedings of the Twenty-Fourth International Conferenc
on International Conference on Automated Planning and
Scheduling, 29–37. AAAI Press.
Bareinboim, E.; Forney, A.; and Pearl, J. 2015. Bandits with
Unobserved Confounders: A Causal Approach. Advances in
Neural Information Processing Systems, 28.
Barenboim, M.; and Indelman, V. 2023. Online POMDP
Planning with Anytime Deterministic Guarantees. In Thirty-
seventh Conference on Neural Information Processing Sys-
tems.
Belzner, L.; and Gabor, T. 2017. Stacked Thompson Ban-
dits. In Proceedings of the 3rd International Workshop on
Software Engineering for Smart Cyber-Physical Systems,
18–21. IEEE Press.
Bubeck, S.; and Munos, R. 2010. Open Loop Optimistic
Planning. In COLT, 477–489.
Cannizzaro, R.; and Kunze, L. 2023. CAR-DESPOT:
Causally-Informed Online POMDP Planning for Robots in
Confounded Environments. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS).
Forney, A.; Pearl, J.; and Bareinboim, E. 2017. Counterfac-
tual Data-Fusion for Online Reinforcement Learners. In In-
ternational Conference on Machine Learning, 1156–1164.
PMLR.
Honda, J.; and Takemura, A. 2014. Optimality of Thomp-
son Sampling for Gaussian Bandits depends on Priors. In
Artificial Intelligence and Statistics, 375–383.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and Acting in Partially Observable Stochastic Do-
mains. Artificial intelligence, 101(1): 99–134.
Kocsis, L.; and Szepesvári, C. 2006. Bandit based Monte-
Carlo Planning. In ECML, volume 6, 282–293. Springer.
Lecarpentier, E.; Infantes, G.; Lesire, C.; and Rachelson, E.
2018. Open Loop Execution of Tree-Search Algorithms. In
Proceedings of the 27th International Joint Conference on
Artificial Intelligence, 2362–2368. IJCAI Organization.
Pearl, J. 2010. The Foundations of Causal Inference. Socio-
logical Methodology, 40(1): 75–149.
Perez Liebana, D.; Dieskau, J.; Hunermund, M.;
Mostaghim, S.; and Lucas, S. 2015. Open Loop Search
for General Video Game Playing. In Proceedings of the
2015 Annual Conference on Genetic and Evolutionary
Computation, 337–344. ACM.

Phan, T.; Belzner, L.; Kiermeier, M.; Friedrich, M.; Schmid,
K.; and Linnhoff-Popien, C. 2019a. Memory Bounded
Open-Loop Planning in Large POMDPs Using Thompson
Sampling. Proceedings of the AAAI Conference on Artifi-
cial Intelligence (AAAI), 33(01): 7941–7948.
Phan, T.; Gabor, T.; Müller, R.; Roch, C.; and Linnhoff-
Popien, C. 2019b. Adaptive Thompson Sampling Stacks for
Memory Bounded Open-Loop Planning. In Proceedings of
the 28th International Joint Conference on Artificial Intelli-
gence, 5607–5613. IJCAI Organization.
Pineau, J.; Gordon, G.; and Thrun, S. 2006. Anytime Point-
based Approximations for Large POMDPs. Journal of Arti-
ficial Intelligence Research, 27: 335–380.
Powley, E.; Cowling, P.; and Whitehouse, D. 2017. Memory
Bounded Monte Carlo Tree Search. AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment.
Ross, S.; Pineau, J.; Paquet, S.; and Chaib-Draa, B. 2008.
Online Planning Algorithms for POMDPs. Journal of Arti-
ficial Intelligence Research, 32: 663–704.
Silver, D.; and Veness, J. 2010. Monte-Carlo Planning in
Large POMDPs. In Advances in neural information pro-
cessing systems, 2164–2172.
Smith, T.; and Simmons, R. 2004. Heuristic Search Value
Iteration for POMDPs. In Proceedings of the 20th con-
ference on Uncertainty in artificial intelligence, 520–527.
AUAI Press.
Somani, A.; Ye, N.; Hsu, D.; and Lee, W. S. 2013. DESPOT:
Online POMDP Planning with Regularization. In Advances
in neural information processing systems, 1772–1780.
Sunberg, Z.; and Kochenderfer, M. 2018. Online Algorithms
for POMDPs with Continuous State, Action, and Observa-
tion Spaces. In Proceedings of the International Conference
on Automated Planning and Scheduling, volume 28, 259–
263.
Świechowski, M.; Godlewski, K.; Sawicki, B.; and
Mańdziuk, J. 2023. Monte Carlo Tree Search: A Review
of Recent Modifications and Applications. Artificial Intelli-
gence Review, 56(3): 2497–2562.
Thompson, W. R. 1933. On the Likelihood that One Un-
known Probability exceeds Another in View of the Evidence
of Two Samples. Biometrika, 25(3/4): 285–294.
Wang, Z.; Xiao, X.; Xu, Z.; Zhu, Y.; and Stone, P. 2022.
Causal Dynamics Learning for Task-Independent State Ab-
straction. In International Conference on Machine Learn-
ing, 23151–23180. PMLR.
Weinstein, A.; and Littman, M. L. 2012. Bandit-Based Plan-
ning and Learning in Continuous-Action Markov Decision
Processes. In Twenty-Second International Conference on
Automated Planning and Scheduling.
Weinstein, A.; and Littman, M. L. 2013. Open-loop Plan-
ning in Large-Scale Stochastic Domains. In Proceedings
of the Twenty-Seventh AAAI Conference on Artificial Intelli-
gence, 1436–1442. AAAI Press.
Wu, C.; Yang, G.; Zhang, Z.; Yu, Y.; Li, D.; Liu, W.; and
Hao, J. 2021. Adaptive Online Packing-Guided Search for
POMDPs. Advances in Neural Information Processing Sys-
tems, 34: 28419–28430.

